m—

PApich] i/

O PEY L,
/ E(!JHZ(; %

Penetration Test Report

Linux Multipath TCP

V11
Amsterdam, June 19th, 2024

Public

Document Properties

Client Linux Multipath TCP

Title Penetration Test Report

Target net/mptcp folder of mpTCP Linux kernel development (commit 78d0cel)

Version 1.1

Pentester Niek van der Dussen

Authors Niek van der Dussen, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 June 13th, 2024 Niek van der Dussen Initial draft

0.2 June 15th, 2024 Marcus Bointon Review

1.0 June 18th, 2024 Marcus Bointon 1.0

11 June 19th, 2024 Niek van der Dussen Reword future work
Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

+31 (0)20 2621 255

info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

11
1.2
13
14
15
1.6
16.1
16.2
1.7

31
32
3.3
34

4.1
4.2

Appendix 1

Executive Summary
Introduction

Scope of work

Project objectives

Timeline

Results In A Nutshell

Summary of Findings

Findings by Threat Level
Findings by Type

Summary of Recommendations

Methodology

Findings

CLN-001 — Hardcoded data structure access

CLN-006 — Dereference of null pointer protocol.c L1610
CLN-008 — Dereference of null pointer protocol.c L2463
CLN-009 — Dereference of null pointer protocol.c L2392

Non-Findings
NF-003 — Build for multiple architectures
NF-007 — Z3 for CodeChecker

Future Work
Conclusion

Testing team

o o o1 o~ B B DB B

16
21

23
23
23

25

26

27

1 Executive Summary

1.1 Introduction

Between April 17, 2024 and June 12, 2024 , Radically Open Security B.V. carried out a penetration test for Linux
Multipath TCP.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

* net/mptcp folder of mpTCP Linux kernel development (commit 78d0cel)

The scoped services are broken down as follows:

+ Testing environment setup: 0.5 days
+ Code reading: 1.5 days

« Dynamic and static testing: 2 days

* Reporting: 2 days

+ Total effort: 6 days

1.3 Project objectives

ROS will perform an analysis of the source code of mpTCP with the developers of multipath TCP in order to assess

the security of mpTCP in the Linux kernel. To do so, ROS will access the net/mptcp folder of mpTCP Linux kernel
development (commit 78dece1) and guide the developers of mpTCP in attempting to find vulnerabilities, exploiting any
such found to try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between April 17, 2024 and June 12, 2024 .

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 Low and 3 Unknown-severity issues.

4 Radically Open Security B.V.

https://github.com/multipath-tcp/mptcp_net-next/tree/78d0ce14398b088891f34b2c83c2e4b650f334fc/net/mptcp
https://github.com/multipath-tcp/mptcp_net-next/tree/78d0ce14398b088891f34b2c83c2e4b650f334fc/net/mptcp
https://github.com/multipath-tcp/mptcp_net-next/tree/78d0ce14398b088891f34b2c83c2e4b650f334fc/net/mptcp

FEamacilli
e |
Tpandl)

Public

There is much automated testing already in place, but we recommend including static analysis in the pipeline for
this project as well. Using a static analyzer (CodeChecker) we were able to find three null pointer dereferences.
Unfortunately, we did not have time to confirm whether they were true positives, but it does demonstrate its potential.

If the found issues are true positives and exploitable, an attacker might be able to crash or even exploit the Linux kernel.

1.6 Summary of Findings

ID Type Description Threat level
CLN-001 Error prone data Access of data in a pointer is done manually, which Low
structuring seems error-prone. In the case of the nonce, this could

lead to using unintended data as the nonce, leading to
nonce re-use.

CLN-006 Null pointer dereference | CodeChecker indicates that the pointer ssk in net/mptcp/ | Unknown
protocol.c may be dereferenced while being null.

CLN-008 Null pointer dereference | CodeChecker indicates that the pointer ssk in net/mptcp/ | Unknown
protocol.c may be dereferenced while being null.

CLN-009 Null pointer dereference | CodeChecker indicates that the pointer ssk in net/mptcp/ | Unknown
protocol.c may be dereferenced while being null.

1.6.1 Findings by Threat Level

[] Low(1)
[] Unknown (3)

25.0%

75.0%

Executive Summary 5

https://codechecker.readthedocs.io/en/latest

1.6.2 Findings by Type
[] Nullpointer dereference (3)
[Error prone data structuring (1)
75.0%
1.7 Summary of Recommendations
ID Type Recommendation
CLN-001 Error prone data Rewriting the code to use more strictly defined forms of accessing parts of a
structuring data structure, such as using macros and structs, may introduce new issues.
Since the impact of this issue is so low, we do not recommend rewriting it
now. However, when the implementation is rewritten anyway, consider ways
of accessing data in a structure where the compiler determines the exact
address instead of the programmer.

CLN-006 Null pointer dereference | Investigate whether this is a true or false positive. Academic tooling exists for
directed fuzzing, using static analysis results such as this issue to guide the
fuzzer to confirm this finding as a true positive. However, it might be faster
to investigate this finding using the knowledge of the context of mpTCP and
following CodeChecker's steps shown in the screenshots in this finding.

CLN-008 Null pointer dereference | See CLN-006

CLN-009 Null pointer dereference | See CLN-006.

6 Radically Open Security B.V.

https://dl.acm.org/doi/abs/10.1145/3576915.3623146

Public

2 Methodology

As indicated in the planning, we did this code both by manually inspecting the code and using tools for automation.

The manual inspection was done by reading through the RFC and looking for security properties. Taking these security
properties in the design, we looked at how they were implemented. Using this methodology, we found the issue CLN-001

(page 8).
The automated tool we used is called CodeChecker, which is a graphical frontend for static analysis. It has support for
several different analyzers, such as cppcheck and LLVM's clang-analyzer. Also, it has converters for outputs of other

tools, including "official" kernel development tools such as coccinelle, smatch and sparse. CodeChecker is open source,
free to use, and also part of the Visual Studio addon for linux development mentioned in the mptcp docker builder.

Using CodeChecker, we have found the issues CLN-006 (page 9), CLN-008 (page 16), and CLN-009 (page
21).

4 'ﬁ_'.fi..'.i-]

Cret | Methodology 7

eyt

https://codechecker.readthedocs.io/en/latest/
https://codechecker.readthedocs.io/en/latest/supported_code_analyzers/
https://clang-analyzer.llvm.org/
https://codechecker.readthedocs.io/en/latest/tools/report-converter/
https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html
https://github.com/FlorentRevest/linux-kernel-vscode
https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

3 Findings

We have identified the following issues:

3.1 CLN-001 — Hardcoded data structure access

Vulnerability ID: CLN-001
Vulnerability type: Error prone data structuring

Threat level: Low

Description:

Access of data in a pointer is done manually, which seems error-prone. In the case of the nonce, this could lead to using
unintended data as the nonce, leading to nonce re-use.

Technical description:

The file net/mptcp/options. ¢ has the function

static void mptcp_parse_option(const struct sk_buff *skb,
const unsigned char *ptr, int opsize,
struct mptcp_options_received *mp_opt)

Here, the data at address ptr are read as

flags = *ptr++;

and

mp_opt->nonce = get_unaligned_be32(ptr);
ptr += 4;

Impact:

This seems error-prone because the data structure must be followed manually, both where the data is written and where
itis read. Doing this manually could lead to a security vulnerability in which the nonce could be read as unchanging
data, defeating the security purpose of using a nonce. However, such a bug seems unlikely to go unnoticed in practice.
Not only must the nonce be read from the incorrect address by the receiver, the transmitter must also have a bug that
uses the same incorrect nonce. Without the transmitter having this bug, communication would fail since transmitter and
receiver are not using the same nonce.

8 Radically Open Security B.V.

FmaralLig
el |
Treiniy

Public

Recommendation:

Rewriting the code to use more strictly defined forms of accessing parts of a data structure, such as using macros
and structs, may introduce new issues. Since the impact of this issue is so low, we do not recommend rewriting it now.
However, when the implementation is rewritten anyway, consider ways of accessing data in a structure where the
compiler determines the exact address instead of the programmer.

3.2 CLN-006 — Dereference of null pointer protocol.c L1610

Vulnerability ID: CLN-006
Vulnerability type: Null pointer dereference

Threat level: Unknown

Description:

CodeChecker indicates that the pointer ssk in net/mptcp/protocol.c may be dereferenced while being null.

Technical description:

According to CodeChecker (in particular, the clang static analyzer clangsa) the pointer ssk at line 1610 of the file
net/mptcp/protocol.c can be dereferenced as a null pointer.

The summary of the steps that lead to this error are as follows:

Findings

“ 45y L1610 — core.NullDereference [19]
b E£J Macro expansions
ﬂ Dereference of null pointer
1 o L3417 — Assuming field 'sk_protocol is equal to IPPROTO_MPTCP
& o L3419 — Entering loop body
! o L3423 — Assuming 'flags’ is not equal to 0
L ° L3439 — Assuming the condition is false
‘.'F e L3441 — Assuming the condition is true
e ° L3442 — Calling'__mptcp_push_pending'
Ly o L1566 — Entered call from 'mptcp_release_cb'
! e L1569 — Assuming field 'sk_protocol is equal to IPPROTO_MPTCP
& o L1576 — Assuming the condition is true
c @ L1576 — Entering loop body
4." e L1580 — Assuming the condition is false
c e L1585 — Entering loop body
‘." @ L1586 — Assuming the condition is true
b @ L1587 — Value assigned to field 'tcp_sock’
b @ L1590 — Value assigned to 'ssk’
! @ L1591 — Assuming 'ssk’ is equal to 'prev_ssk’
I @ L1608 — Assuming 'ret’ is <= 0
& @ L1609 — Assuming the condition is false
> @ L1610 — Dereference of null pointer

The detailed execution steps are as follows:

10 Radically Open Security B.V.

Pl

=
J

O |
— .-F!fl:i

P (78dece14398besss9if3...) /root/git_repos/mptcp_net-next/net/mptcp/protocol.c [7]

3412

3413 /* processes deferred events and flush wmem */
2414 static void mptcp_release_ch(struct sock *sk)

Public

3415 _ must_hold(&sk->sk_lock.slock)
3416 {
3417 struct mptcp_sock *msk = mptcp_sk(sk);
({typeof (sk)_ptr =(sk);({int __ret_warn_on =!!(_ptr -=sk_protocol
|=IPPROTO_MPTCP);if (__builtin_expect (!!{__ret_warn_on },@))do
{__auto_type _ flags =(1<<@)|(((9)<<B));({asm volatile ("1595"":
nopinit"".pushsection .discard.instr_begin\nit"".long ""1595""b -
Anvt" " popsectioninit™::"i"(1595));});do {asm __inline wvolatile
("Ll:vt"".byte @x@f, @x@b""\n"".pushsection
__bug_table A\ aw\"\n""2:\t"".long ""1b"" - . ""A\t#
bug_entry::bug_addrin""\t"".long ""%c@"" - .""\t#
bug_entry::filewn""\t.word %cl""\t# bug_entry::linewn""\t.word
%c2""\t# bug_entry::flagsin""\t.oxrg
2b+%c3\n"".popsectionin” "998:\n\t"". pushsection
.discard.reachablevnit™".long 998b\n\t"".popsectioninvt”:: 1"
("net/mptcp/protocol.c”), "1 (3417),"i"(__flags), "i"(sizeof (struct
bug_entry)));}while (@);({asm volatile ("1596"":
- nopinit"".pushsection .discard.instr_endin\t"".long ""1596""b -
Amvt" " popsectioninit™::"i"(1596));}); twhile (@);__builtin_expect
(! (_ret_wazn_on },@);});_Generic (_ptr ,const typeof (*(_ptr))*:
{{const struct mptcp_sock *)({{void *__mptr =(void *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)-=sk .icsk_inet .sk
11| __builtin_types_compatible_p (typeof (*{_ptr)),typeof (void
)),"pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
111:})) default :((struct mptcp_sock *)({vold *_mptr =(wvoid *){_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)->sk .icsk_inet .sk
)] | _builtin_types_compatible_p (typeof (*(_ptr)),typeof (void
1), "pointer type mismatch in comtainer_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
IR N Y
- -
: °nssuing field 'sk_protocol' is equal to IPPROTO_MPTCP > 1
e e e e o o o
3418 J
3419 for (;;) {
o\(\gntering loop body »
3420 unsigned long flags = (msk-=cb_flags & MPTCP_FLAGS_PROCESS_CTX_MEED);
3421 s?dl:t list_head join_list;
3422
3423 if’?lflags}
o Assuming 'flags' is not equal to @ »
3424 braak;
3425
3426 INIT_LIST_HEAD(&join_list);
3427 list_splice_init(&msk-=join_list, &jeoin_list);
3428
3429 /* thg following actions acquire the subflow socket lock
3438 *
3431 * 1Y can't be invoked in atomic scope
Findings 11

P (78d@ce14398b0888I1F3. .)

3421
3422
3423

3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439

st(ydct list_head join_list;

ifj?lflags}

e Assuming 'flags' is not equal to @ »
brdak;

INIT_LIST_HEAD(&join_list);
ice_init(&msk->join_list, &join_list);

theg following actions acquire the subflow socket lock

can't be invoked in atomic scope

must avoid ABBA deadlock with msk socket spinlock: the RX
datapath acquires the msk socket spinlock while helding
the subflow socket lock

->cb_flags &= ~flags;
spin_unlock_bh{&sk->sk_lock.slock);

if’?flags & BIT(MPTCP_FLUSH_JOIN_LIST))
° ¢ Assuming the condition is false »

__mptcp_flush_join_list(sk, &join_list);
if" (flags & BIT{MPTCP_PUSH_PENDING))

e 4 As}mgi‘ng the condition is true »

__mptcp_push_pending(sk, @);

° ¢ Calling '__mptcp_push_pending® »

if (flags & BIT(MPTCP_RETRANSMIT))
_ mptcp_retrans(sk);

/root/git_repos/mptcp_net-next/net/mptcp/protocol.c]

12

Radically Open Security B.V.

P

=
J

Public

P (78dece14398be88891f3...) /root/git_repos/mptcp_net-next/net/mptcp/protocol.c [

O |
— .-F!fl:i

1565
1566 Void _nptcp push pending(struct sock Isk, unsigned int flags)
° < Entered call from 'mptcp_release_ch' » E
1567 { ~ —
1568 struct sock *prev_ssk NULL, "§ssk = NULL;
1569 struct mptecp_sock *ms-k_--"mptcp_sk(sk],
({typeof (sk)_ptr =(sk);({int __ret_warn_on =!1{_ptr -=sk_protocol
I=IPPROTO_MPTCP);if (__builtin_expect (!!{__ret_warn_on },@))do
{__auto_type _ flags =(1<<@)|(((9)<<8));({asm volatile ("1385""
nopinit"".pushsection .discard.instr_begin‘n\t"".long ""1385""b -
AnVt"" . popsectioni\nit”::"i"(1385));});do {asm __inline volatile
("1:vt"".byte @xef, exeb" "\n"".pushsection
__bug_table, \"aw\"\n""2:0 "0, long B Y 2
bug_entry: :bug_addr\n” ".long " R «
bug_entry::filewn""\t. word %ol tAtE# bug entry::line\n""\t.word
%C2""\t# bug_entry::flags\n""\t.org
2b+%c3\n"" . popsectionin" "998:\n\t"". pushsection
.discard.reachable\n\t”".long 998b\n\t"".popsectioninit"::"1i"
("net/mptcp/protocol.c”),"i"(1569),"i"(__flags), "i"(sizeof (struct
bug_entry)));}while (@);({asm volatile ("1386"":
" nop\n\t"".pushsection ,discard instr_endin‘t"".long ""1386""b -
Anvt" " popsectioninit™::"i"(1386));}); while (@);_ builtin_expect
{11 (__ret_warn_on]-,@-);}},_Genenc (_ptr ,const typeof (*(_ptr))*:
((const struct mptcp_sock *)({void *__mptr =(void *)(_ptz
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
)) . typeof (((struct mptcp_sock *)@)->sk .icsk_inet .sk
11| __builtin_types_compatible_p [typeof (*{_ptr }},typeof (void
)),"pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
11):3)), default :((struct mptcp_sock *)({vold *__mptr =(void *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)->sk .icsk_inet .sk
1)1 __builtin_types_compatible_p (typeof (*{_ptr)),typeof (void
1), "pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
NI
o € Assuming field 'sk_protocol’ is equal to IPPROTO_MPTCP »
157@ stpuct mptecp_sendmsg_info info = {
1571 .flags = flags,
1572 T
1573 bopl do_check_data_fin = false;
1574 int push_count = 1;
ASTE Y
1576 while’?mptcp_send_head(sk} &% (push_count > B)) {
e Assuming the condition is true »
£ Entering loop body >
1577 struct mptcp_subflow_context *subflow;
1578 i Tet = @;
1579 ?
1580 ifﬁ?mptcp_sche-d_get_send(msl-c}]
o £ Asy(ng the condition is false »
Findings 13

P (78dece14398b@88891f3...) /root/git_repos/mptcp_net-next/net/mptcp/protocol.c [

1o0wu

1581
1582
1583
1584
1585

1586

1587

1588
1589
1590

1591

1592
1593
1584

L1 P LU SUIIEU_yE L SEnu SR
@ £ Assuping the condition is false »

bre

push_count = @;

mptcp_for_each_subflow({msk, subflow) {

for (subflow =({veid *__mptr =(void *)((&((msk)->conn_list })-=next
);_Static_assert (__builtin_types_compatible_p (typeof (*((&((msk)-
>conn_list))->next }),typeof (((typeof (*subflew)}*)@)->node

})| | _builtin_types_compatible_p (typeof (*((&({msk)->conn_list })-
>next)),typeof (veid)),"pointer type mismatch in container_of()");
((typeof (*subflow)*)(__mptr -_ builtin_offsetof (typeof (*subflow
),node }));});1ist_is_head (&subflow ->node ,(&((msk)->conn_list
)))isubflow =({void *_ mptr =({void *)((subflow)}->node .next
});_Static_assert (_ builtin types compatible p (typeof (*((subflow)-
>node .next)),typeof (((typeof (*(subflow))*)@)->node

})| | _builtin_types_compatible_p (typeof (*((subflow }->node .next
)}, typeof (void)),"pointer type mismatch in container_of()}"};
((typeof (*(subflow)})*)(_mptr -_ builtin_offsetof (typeof (*
(subflow }),node)});}))

Macro Expansion

({do {__attribute__ ((__noreturn__))extern void

__compiletime_assert_1387 (void)__attribute__ ((__error__

{"Unsupported access size for {READ,WRITE}_ONCE().")));if (!((sizeof

(subflow ->scheduled)==sizeof (char)||sizeof (subflow ->scheduled

J==sizeof (short)||sizeof (subflow ->scheduled }==sizeof (int

)| |sizeof (subflow ->scheduled)==sizeof (long))}||sizeof (subflow -

=scheduled)==sizeof {long long)))__compiletime_assert_1387

UETS ST ELES LU () ; jwhile (B);(*(const volatile typeof (_Generic (({subflow -
sscheduled),char :(char)@,unsigned char :({unsigned char)@,signed
char :{signed char)@,unsigned short :(unsigned short)@, signed short
: (signed short)@,unsigned int :(unsigned int)@,signed int :(signed
nt)@,unsigned long :(unsigned leng)@,signed leng :(signed long
)8, unsigned long long :(unsigned long long)@,signed long long :
(gigned long long)@, default :(subflow ->scheduled }))*)&(subflow -
s>s¢heduled));})

prew” ssk = ssk;
ssk = mptcp_subflow_tcp_sock(subflow);

e < \.’al\é assigned to 'ssk' »
i ssk 1= prev_ssk) {
@ < Assuming °ssk' is equal to 'prev_ssk' »

/1 First check. If the ssk has changed since
the last round, release prev_ssk
/

14

Radically Open Security B.V.

Public

P (78d@ce14398b@88891f3...) /Toot/git_tepos/mptcp_net-next/net/mptcp/protocol.c [
1591 if (ssk 1= prev_ssk) {
@ € Assuming 'ssk’ is equal to 'prev_ssk' >

1592 /1 First check. If the ssk has changed since

the last round, release prev_ssk

(prev_ssk)
mptep_push_release(prev_ssk, &info);

Need to lock the new subflow only if different
* from the previous one, otherwise we are still
* helding the relevant lock

*

f

ock_sock(ssk);

push_count++;
rét = _ subflow_push_pending(sk, ssk, &info);
if’?IE:t <= 0) {

0 £ Assuming 'ret' is <= @ »

1609 1 (ret 1= -EAGAIN ||

@ € Assuming the.condition is false »

1610 (1 << ssk->sk_state) &

0 ¢

Dereference of null pointer

For more information see the checker documentation
(TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))

push_count--;

161 continue;

161 }

1615 do_check_data_fin = true;

1616

161

161

161

161
161

TR

[
W o~ C
-

Impact:

We didn't investigate whether this is a true positive, which is why we have set the threat level to unknown. If this is a true
positive, the null pointer dereference could lead to a crash of the kernel (basics of null pointer dereference here) or even
a security vulnerability.

Recommendation:

Investigate whether this is a true or false positive. Academic tooling exists for directed fuzzing, using static analysis
results such as this issue to guide the fuzzer to confirm this finding as a true positive. However, it might be faster to
investigate this finding using the knowledge of the context of mpTCP and following CodeChecker's steps shown in the
screenshots in this finding.

FEamacilli
L '3*-'5.1.. Findings 15

eyt

https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://googleprojectzero.blogspot.com/2023/01/exploiting-null-dereferences-in-linux.html
https://dl.acm.org/doi/abs/10.1145/3576915.3623146

3.3 CLN-008 — Dereference of null pointer protocol.c L2463

Vulnerability ID: CLN-008
Vulnerability type: Null pointer dereference

Threat level: Unknown

Description:

CodeChecker indicates that the pointer ssk in net/mptcp/protocol.c may be dereferenced while being null.

Technical description:

According to CodeChecker (in particular, the clang static analyzer clangsa) the pointer ssk at line 2463 of the file
net/mptcp/protocol.c can be dereferenced as a null pointer.

The summary of the steps that lead to this error are as follows:

- a 45y L2463 — core.NullDereference [15]
» C£{ Macro expansions
ﬂ Access to field 'icsk ulp ops' results in a dereference of a null pointer
! o L3382 — Assuming field 'sk_protocol' is equal to IPPROTO_MPTCP
'Q e L3386 — Calling 'mptcp_destroy_common’
Ly o L3352 — Entered call from 'mptcp_destroy’
c ° L3360 — Entering loop body
e e L3360 — Looping back to the head of the loop
c ° L3360 — Entering loop body
3 ° L3361 — Calling' mptcp close ssk'
L o L2412 — Entered call from 'mptcp_destroy_common'
o L2416 — Assuming field 'sk_protocol' is equal to IPPROTO_MPTCP
@ L2424 — Assuming field 'in_accept_queue’ is not equal to 0
e L2424 — Assuming 'ssk’ is equal to field first
e L2425 — Assuming the condition is false
& @ L2425 — Assuming the condition is false
1 @ L2434 — Assuming field ‘free_first' is not equal to 0
> @ L2463 — Access to field ‘icsk_ulp_ops' results in a dereference of a null pointer

LT

PR

The detailed execution steps are as follows:

16 Radically Open Security B.V.

Pl

)
J

Open |
“remdd

Public

P (78dece14398bo8ss9lf3...) /root/git_repos/mptcp_net-next/net/mptcp/protocol.c [7]

3378}
3379

3288 static wvold mptcp_destroy(struct sock *sk)

3381/ {
3382

3383
3384
3385
3386

3387
3388}

struct mptcp_sock *msk = mptcp_sk(sk);

/* allow

({typeof (sk)_ptr =(sk);({int _ret_warn_on =!1(_ptr -»sk_protocol
|=IPPROTO_MPTCP);if (__builtin_expect (!!(__ret_wazn_on },@))do
{__auto_type _ flags =(1<<B)|(((9)<<8));({asm volatile ("1589"":
nopwnit”".pushsection .discard.instr_begininit"".long ""1589""b -
AnVt" " popsectioninit”::"1"(1589));}),;do {asm __inline volatile
("1:vt"".byte @xef, @x@b""\n"".pushsection

_ bug_table,\"aw\"\n""2:\t"".long ""1b"" - ."U\tE
bug_entry::bug_addrin""\t"".long ""%c@"" - ."U\t#
bug_entry::file\n""\t.word %cl""\t# bug_entry::line\n""\t.word
%c2""\t# bug_entry::flags\n""\t.oxg
2b+%c3\n"".popsection\n""998:\n%t"". pushsection
.discard.reachable\nit"".long 998b\n\t"" . popsectioninit”::"1"
("net/mptcp/protocol.c”),"i"(3382),"i"(__flags),"i"(sizeof (struct
bug_entry)));twhile (@);({asm volatile ("159@"":

" nop\n\t"".pushsection .discard.instr_endin%t"".long ""159@""b -
Anvt"" . popsectioninit”::"1"(159@));}); while (@);_ builtin_expect
(11{__ret_warn_on),B);});_Generic (_ptr ,const typeof (*(_ptr })*:
({const struct mptcp_sock *)({void *__mptr =(void *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)-»sk .icsk_inet .sk
)| |__builtin_types_compatible_p (typeof (*{_ptr)),typeof (void
11, "pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -__builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
111540, default :{(struct mptcp_sock *)({void *__mptr =(void *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)-»sk .icsk_inet .sk
)| |__builtin_types_compatible_p (typeof (*{_ptr)),typeof (void
11, "pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -__builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
NP

he following to close even the initial subflow */

msk->free)

first = 1;

mptcp_destroy_common(msk, @);

° ¢ Calling 'mptcp_destroy_common' >

sk_sockets_allocated_dec(sk);

Findings

17

$* (78d@ce14398b@88891f3...) /root/git _repos/mptcp_net-next/met/mptcp/protocol.c [

3349
3350
3351
3352

3353
3354
3355
3356
3257
3358
3359
336@

3361

anen

msk->rcvg space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
}

B S e e .

void_mptcp_destroy_commen(struct mptcp_sock *msk, unsigned int flags)
_

i ° < Entered call from 'mptcp_destroy' » !
~

struct mptcp_subflow_context *subflow, *tmp;
struct sock *sk = (s Sock *)msk;

__mptcp_clear_xmit(sk);

/* join 1istYwill be eventually flushed (with rst) at sock lock release time */
mptecp_for_each_subflow_safe(msk, subflow, tmp)

for (subflow =({veid *_ mptr =(void *)((&((msk)->conn_list))->next
);_Static_assert (_ builtin_types_compatible_p (typeof (*((&((msk)-
sconn_list))-»next)),typeof ({(typeof (*subflow)*)@)-=node

1) |__builtin_types_compatible_p (typeof (*((&((msk)->conn_list })-
>next)),typeof (void }),"pointer type mismatch in container_of()"};
((typeof (*subflow }*)(__mptr -__builtin_offsetof (typeof (*subflow
J,node)});}),tmp =({void *__mptr =(void *)((subflow }->node .next
);_Static_assert (__builtin_types_compatible_p (typeof (*((subflow)-
>node .next }),typeof (((typeof (*({subflow))*)@)->node

1) |__builtin_types_compatible_p (typeof (*((subflow }->node .next
}),typeof (void }),"pointer type mismatch in container_of()"};
{{typeof (*(subflow))*)(__mptr - builtin offsetof (typeof (*
{subflow }),node)));});!11ist_is_head (&subflow -=node , (&((msk)-
>conn_list)));subflow =tmp ,tmp ={{void *__mptr =(void *)({tmp)-
>node .next }; Static_assert (_ builtin types_compatible p (typeof
((tmp)->node .next)),typeof (((typeof (*(tmp })*)@)->node
))||__builtin_types_compatible_p (typeof (*((tmp }->node .next
)).typeof (void)),"pointer type mismatch in container of()");
((typeof (*(tmp))*)(__mptr -__builtin offsetof (typeof (*(tmp
)).node }));}))

Macro Expansion

*

Ll < Entering loop body »

@

< Looping back to the head of the loop »

B < Entering loop body »

__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
7 £ Calling '_ mptcp_close ssk' »

18

Radically Open Security B.V.

Public

¥ (78doce14398bosssg1f3...) /root/git_repos/mptcp_net-next/net/mptcp/protocol.c [7]

2411 */
2412 static void _ mptcp_close_ssk({struct sock *sk, struct sock *ssk,

P
,' e < Entered call from 'mptcp_destroy_common’ > :
~

2413 uct mptcp_subflow_context *subflow,
2414 unsig int flags)
2415/ {
2416 struct mptcp_sock *msk = mptcp_sk(sk);
({typeof (sk)_ptr =(sk);({int __ret_warn_on =!!(_ptr -»sk_protocol
I=IPPROTO_MPTCP);if (_ builtin_expect (!!{__ret_warn_on),8))do
{__auto_type _ flags =(1<<@)|(((9)<<8));({asm volatile ("1436"":
nopynit™".pushsection .discard.instr_begininit"".long ""1456""b -
Lwnvt" " popsectioninit®::"i" (1456});});do {asm __inline volatile
("1:\t"".byte @x@f, @x@8b""\n"".pushsection
__bug_table, \rawv"wn""2:vt"".long ""1b"" - L UUAtE
bug_entry: :bug_addrin""\t"".long ""%c@"" - .""\t#
bug_entry::filein""\t.word %cl""\t# bug_entry::line\n""\t.word
%C2""\t# bug_entry::flags\n""\t.oxrg
2b+%c3\n" " . popsectionin”"998:\n\t" " . pushsection
.discard. reachable\n\t”".long 998b\n\t"" . popsectionimit"::"1i"
{"net/mptcp/protocol.c”),"i"(2416),"1"(__flags),"i"(sizeof (struct
bug_entry)));}while (@);({asm volatile ("1457"":
" nopinit™".pushsection .discard.instr_endinit"".long ""1457""b -
AN\t"".popsectioninit”::"i"(1457));});}while (@);__ builtin_expect
(11{__ret_warn_on },8);});_Generic (_ptr ,const typeof (*(_ptr))*:
{(const struct mptep_sock *)({{vold *__mptr =(veid *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
1), typeof (((struct mptcp_sock *)@)-=sk .icsk_inet .sk
11| _builtin_types_compatible_p (typeof (*({_ptr)), typeof (void
)),"pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
110130 default :((struct mptcp_sock *)({void *_mptr =(void *)(_ptr
);_Static_assert (__builtin_types_compatible_p (typeof (*(_ptr
V). typeof (((struct mptcp_sock *)@)-=sk .icsk_inet .sk
1| _builtin_types_compatible_p (typeof (*(_ptr)), typeof (void
)),"pointer type mismatch in container_of()");((struct mptcp_sock *)
(__mptr -_ builtin_offsetof (struct mptcp_sock ,sk .icsk_inet .sk
NEMNH

e £ Assuming field 'sk_protocel' is equal to IPPROTO_MPTCP »

2417 Hool dispose_it, need_push = false;
2418
2419 * If the first subflow moved to a close state before accept, e.g. due
2420 * to an incoming reset or listener shutdown, the subflow socket is
2421 * already deleted by inet_child_forget() and the mptcp socket can't
2432 * survive too.

2423 A\

2424 if’?msk-:vin_accept_queue &E
@ € Assuming fie

sk->first == ssk &&

in_accept_queue’ is not equal to @ »

Q € Assuming 'ssk' is eqgual to field 'first" »

2425 (sock_flag(sk, SOCK_DEAD) || seck_flag(ssk, SOCK_DEAD}}) {

@ £ Assuming the condition i5 false »

@ 4 Assuming the condition is false »

Papell
Crpurl indi
R Findings 19

Impact:

P (78d@cel4398b@8RRI1TS. ..)

2426
2427
2428
2429
243@
2431
2432
2433
2434

2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463

See CLN-006 (page 9)

[* ensure later che in mptcp_worker() will dispose the msk */

lock_sock_ne, . SINGLE_DEPTH_NESTING);
mptep_subfdow_drop_ctx(ssk);
goto o
}
. R . .
dispose_it = msk->free_first || ssk != msk->first;

@ € Assuming field 'free_first' is not equal to @ »

if’?dispcse_it)
list_del (&subflow->node);

lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);

if ((flggs & MPTCP_CF_FASTCLOSE) && !_ mptcp_check_fallback(msk)) {
/* foe sure to force the tcp_close path

* to generate the egress reset

I

sk->sk_lingertime = ;

sock_set_flag(ssk, SOCK_LINGER);

subflow->send_fastclose = 1;

fEQTPUSh = (flags & MPTCP_CF_PUSH) && _ mptcp_retransmit_pending_data(sk);
(Idispose_it) {

__mpttp_subflow_disconnect(ssk, subflow, flags);

release_sock(ssk);

i

ggto out;
}

subflow->disposable = 1;
/* fif ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
* the ssk has been already destroyed, we just need to release the

reference owned by msk

!
if’?%inet_csk(ssk]->ic5k_u1p_aps} {
_Generic (ssk ,const typeof (*(ssk))*:((const struct

/root/git_repos/mptcp_net-next/net/mptcp/protocol.c [

inet_connection_sock *)({void *__mptr =(void *)(ssk);_Static_assert
{__builtin_types_compatible_p (typeof (*(ssk)),typeof (((struct

inet_connection_sock *)@)->icsk_inet .sk

1) || __builtin types_compatible p (typeof (*(ssk)).typeof (
}),"pointer type mismatch in container_of()");((stTuct
inet_connection_sock *)(__mptr -_ builtin_offsetof (struct

void

LETS (S ELESTL M inet_connection_sock ,icsk_inet .sk)));})),default :((struct

inet_connection_sock *)({void *__mptr =(void *)(ssk);_Static_assert
(__builtin_types_compatible_p (typeof (*(ssk }),typeof (((struct

inet_connection_sock *)@)->icsk_inet .sk

3] | _builtin_types_compatible_p (typeof (*(ssk)).typeof (
})."pointer type mismatch in container_of()");((struct
inet_connection_sock *){__mptr - builtin offsetof (struct
inet_connection_sock ,icsk_inet .sk)));})))

For more information see the checker documentation.

void

Access to field 'icsk ulp ops' results in a dereference of a null pointer

20

Radically Open Security B.V.

Fgacal iy
e |
““pendi)

Public

Recommendation:

See CLN-006 (page 9)

3.4 CLN-009 — Dereference of null pointer protocol.c L2392

Vulnerability ID: CLN-009
Vulnerability type: Null pointer dereference

Threat level: Unknown

Description:

CodeChecker indicates that the pointer ssk in net/mptcp/protocol.c may be dereferenced while being null.

Technical description:

According to CodeChecker (in particular, the clang static analyzer clangsa) the pointer ssk at line L2392 of the file
net/mptcp/protocol.c can be dereferenced as a null pointer.

The summary of the steps that lead to this error are as follows:

Findings 21

- c 45y L2392 — core.NullDereference [31]
» ©J Macro expansions
B Dereference of null pointer
! o protocol.c:3382 — Assuming field 'sk_protocol' is equal to IPPROTO_MPTCP
Q o protocol.c:3386 — Calling 'mptcp_destroy_common’
Ly e protocol.c:3352 — Entered call from "'mptcp_destroy’
¢ ° protocol.c:3360 — Entering loop body
Q e protocol.c:3361 — Calling '__mptcp_close_ssk’
Ls ° protocol.c:2412 — Entered call from "'mptcp_destroy_common’
! ° protocol.c:2424 — Assuming field 'in_accept_queue' is 0
"Q o protocol.c:2436 — Calling ‘list_del'
Ly o list.h:227 — Entered call from'__mptcp_close_ssk'
3 @ listh:229 - calling'_list_del_entry’
Ly 0 listh:213 — Entered call from list_del
> @ list.h:218 — Value assigned to field 'tcp_sock’
< (@) listh:229 — Returing from *__list_del_entry
&« @ protocol.c:2436 — Returning from ‘list_del’
@ protocol.c:2463 — Assuming field 'icsk_ulp_ops' is non-null
@ protocol.c:2480 — Assuming 'ssk’ is not equal to field first'
o protocol.c:2493 — Assuming field first’ is null
<~ @ protocol.c:3361 — Returning from*__mptcp_close_ssk'
P @ protocol.c:3360 — Looping back to the head of the loop
¢ @ protocol.c:3360 — Entering loop body
> e protocol.c:3361 — Passing value via 2nd parameter "ssk’'
Q @ protocol.c:3361 — Calling *__mptcp_close_ssk’

Ly @ protocol.c:2412 — Entered call from 'mptcp_destroy_common'
@ protocol.c:2416 — Assuming field 'sk_protocol’ is equal to IPPROTO_MPTCP
@ protocol.c:2424 — Assuming field 'in_accept_queue' is 0
@ protocol.c:2434 — Assuming field 'free_first' is 0
@ protocol.c:2434 — Assuming 'ssk' is equal to field first’
> @ protocol.c:2451 — Passing null pointer value via 1st parameter 'ssk'
"Q @ protocol.c:2451 — Calling *__mptcp_subflow_disconnect'

Ly @ protocol.c:2388 — Entered call from *__mptcp_close_ssk’

> e protocol.c:2392 — Dereference of null pointer

S R - _

Unlike CLN-006 (page 9) and CLN-008 (page 16), we won't show the step by step here because many of the 31
steps are function calls. For a detailed view, see the HTML output file of CodeChecker attached to this report.

Impact:

See CLN-006 (page 9).

Recommendation:

See CLN-006 (page 9).

22 Radically Open Security B.V.

Fgacal iy

e |

““pendi)

Public

4 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.1 NF-003 — Build for multiple architectures

We built the mpTCP development version of the Linux kernel using the project's build instructions. This worked for
x86 architectures, but not for aarch64. That issue was fixed during this audit. We intended to build the kernel on less-
common, and therefore potentially less-tested architectures, to try to find bugs in the automated tests for mpTCP.
However, we learned from one of the mpTCP developers that later in the upstreaming process, tests of exactly

this nature are done automatically. In particular, a recent Intel test run ran on 24 architectures with 139 different
configurations.

Given how much testing of this kind is already in place, we decided our time would be better spent on other topics.

4.2 NF-007 — Z3 for CodeChecker

Static analyzers can give many false positives, which is most likely the case here as well. Taking only the static analysis
results from mpTCP (see Methodology TODO link to section), CodeChecker still gives us 3885 results.

The Z3 Theorem Prover is an experimental feature of CodeChecker to reduce the number of false positives. Using it
however, is not straightforward. Most importantly, you need to build Clang yourself with Z3 enabled. We first attempted
this on Debian 12, but this was not feasible because it is shipped with GCC 12, which is too low for CodeChecker if you
want to use the GCC Static Analyzer backend. Using Fedora 40 we got the Z3 functionality to work. The hope was that
Z3 could be leveraged to reduce the number of false positives, but CodeChecker still got 3885 resullts.

There is also an option to use Z3 as the only backend for CodeChecker as described here, but we could not get this
to work. Also, note that is slower and may even hang if no timeout is set, so this is not recommended for automated
pUrposes.

For reproducibility of analyzing in CodeChecker with Z3 in Fedora 40, we will share our steps here.

dnf install -y dnf-plugins-core git cmake gcc gcc-c++ autoconf automake unzip python3 python3-devel
cppcheck clang-tools-extra

mkdir ~/git_repos

cd ~/git_repos

git clone https://github.com/1lvm/1l1lvm-project.git

cd llvm-project

git checkout llvmorg-18.1.7

mkdir build

cd build

Download the library directly, using “dnf install’ results in the library not being found by cmake

wget https://github.com/Z3Prover/z3/releases/download/z3-4.13.0/z3-4.13.0-x64-glibc-2.35.zip

unzip z3-4.13.0-x64-glibc-2.35

cmake -DLLVM_Z3 INSTALL DIR=. -DLLVM_ENABLE_Z3 SOLVER=1 -DLLVM_ENABLE_PROJECTS=clang -
DCMAKE_BUILD_TYPE=Release -G "Unix Makefiles" ../1lvm

build Clang with Z3 enabled

Non-Findings 23

https://github.com/multipath-tcp/mptcp_net-next
https://github.com/multipath-tcp/mptcp-upstream-virtme-docker
https://codechecker.readthedocs.io/en/latest/analyzer/checker_and_analyzer_configuration/#z3-theorem-prover
https://codechecker.readthedocs.io/en/latest/tools/report-converter/#gnu-gcc-static-analyzer
https://gcc.gnu.org/wiki/StaticAnalyzer
https://codechecker.readthedocs.io/en/latest/analyzer/checker_and_analyzer_configuration/#z3-theorem-prover

make
install our newly build Clang with z3 enabled
cp build/bin* /usr/local/bin/

clone the mptcp repo

cd ~/git_repos

git clone https://github.com/multipath-tcp/mptcp_net-next.git

cd mptcp_net-next

optional: checkout the version that we used throughout this audit
git checkout 78d0ce14398b088891f34b2c83c2e4b6501334fc

#verify that we are using our clang version, the following output should be our install location "/
usr/local/bin’
which clang

build the linux kernel using our Clang with Z3 enabled

docker run -e INPUT_CLANG=1 -v "${PWD}:${PWD}:rw" -w "${PWD}" -v "${PWD}/.home:/root:rw" --rm -it
--privileged --pull always mptcp/mptcp-upstream-virtme-docker:latest manual

leave container, ctrl+d

we now have a file with all build commands used by clang while building this repo. We're going to
trim it down to focus only on mptcp

docker run -e INPUT_CLANG=1 -v "${PWD}:${PWD}:rw" -w "${PWD}" -v "${PWD}/.home:/root:rw" --rm -it
--privileged --pull always mptcp/mptcp-upstream-virtme-docker:latest cmd bash

Run the following in the docker itself

jq 'map(select(.file | contains ("/mptcp/")))' .virtme/build-clang/compile_commands.json >
compile_commands-mptcp.json

leave the docker

exit

still in the mptcp repo

Install CodeChecker

python3 -m venv .venv

source .venv/bin/activate

pip install codechecker setuptools

run CodeChecker

CodeChecker analyze compile_commands-mptcp.json --z3-refutation on --enable sensitive --enable
portability --output .codechecker/reports

CodeChecker server &

push them to our local server

CodeChecker store .codechecker/reports/ -n mptcp

in your browser, go to localhost:8081 to use the CodeChecker Web UI

or export as HTML. Less user friendly, much easier to share

CodeChecker store .codechecker/reports/ -n mptcp

24 Radically Open Security B.V.

Public

5 Future Work

* Retest of findings
When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be
performed to ensure that they are effective and have not introduced other security problems.

* Regular security assessments
Security is an ongoing process and not a product, so we advise undertaking regular security assessments and
penetration tests, ideally prior to every major release or every quarter.

+ Verifying that implementation follows design
We recommend going through the protocol design and identifying security properties of the protocol. Next, check
whether these security properties are correctly implemented.
As part of this audit, we checked the implementation of one security principle in particular, namely whether each
nonce is randomly generated. The fact that this was quite difficult to verify, lead to us reporting this difficulty as
a point of attention (see CLN-001 (page 8)). This demonstrates that the exercise of verifying that the security
properties of the implementation follow the design, has the potential to uncover other implementation errors.

+ Kernel fuzzing
There is already fuzzing in place using syzkaller, run by the bot called syzbot. Its results for the mpTCP part can
be seen here, by clicking through net\mptcp. Inspecting coverage could be useful for finding functions that
aren't covered, and making sure they are tested (either manually or with manual effort and other fuzzers such as
AFL++),

Frapacilliy

Ot L Future Work)

eyt

https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream
https://storage.googleapis.com/syzbot-assets/5a7224dd3595/ci-upstream-kasan-badwrites-root-83a7eefe.html
https://github.com/google/syzkaller/blob/master/docs/coverage.md
https://github.com/AFLplusplus/AFLplusplus

6 Conclusion

We discovered 1 Low and 3 Unknown-severity issues during this penetration test.

Most of the "low-hanging fruit" for security and stability has already been dealt with for this project. The developers are
experienced and knowledgeable, and security has been taken seriously from the outset. This is demonstrated by the
fact that threat modelling and security considerations are part of the mpTCP RFC. Additionally, this project is functionally
tested and fuzzed by other members of the Linux ecosystem, strengthening our faith in the project's security. The team
is already aware that there may be insights left to gain from static analysis, even though there are a very large number of
probable false positives. Given that there may still be true positives hiding in this haystack, we recommend looking into
tools to better visualize the findings and tracking marked false positives. During this audit, it seemed that CodeChecker
could be a tool to achieve this goal.

The protocol design has already been audited in the past, but we nevertheless recommend (manually) verifying that the
implementation actually follows the protocol design. For example, a nonce is assumed in the protocol design to be truly
used only once. However, it is not trivial to spot a nonce being reused in the implementation. Looking for more security
properties (such as the use of nonces, or whether they are generated randomly) in the protocol design and verifying their
correct implementation could prove advantageous.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective
and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process — this penetration test is just a one-time snapshot. Security
posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order
to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations
of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this
report.

26 Radically Open Security B.V.

https://codechecker.readthedocs.io/en/latest/

FEamacilli
Crpeal
.

1

eyt

Appendix 1

Public

Testing team

Niek van der Dussen

Niek is a pentester with several years of experience in embedded system development,
a bachelor's degree in electrical engineering and a master's degree in computer
science. He has always had a special interest in security, and practical security
experience as a developer. Niek is currently expanding his skills as an all-round security
specialist by doing the PEN-200 OSCP course.

Melanie Rieback

Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team

27

